Quiz - The Inspector's Calc's

Answer questions on a separate sheet of paper

- 1. Most math mistakes are the result of:
 - a. inputting the wrong numbers in the calculator.
 - b. the inspector's failure to write the formula.
 - c. placing the decimal point in the wrong location.
 - d. the inspector's inability to use the calculator.
- 2. When completing a calculation, always:
 - a. highlight the final answer.
 - b. stand up and shout, "Can you believe it, I did it!"
 - c. add the appropriate units. (*ipy*, yrs, etc.)
 - d. move on to the next problem, and do *not* check your work.
- 3. A "mil" is:
 - a. one-thousandth of an inch.
 - b. one-millimeter.
 - c. a speed used in describing corrosion.
 - d. a place where wheat is ground into flour.
- 4. Write the formula for calculating the *Short-Term* corrosion rate.
- 5. Write the formula for calculating the *Long-Term* corrosion rate.
- 6. Write the formula for calculating the *Remaining Life*.
- 7. Convert the date, May 2013 to a number.
- 8. Convert the number 2029.75 to a date (year and month).
- 9. In March 2013, a CML was measured at 0.289". In March 2020 the same CML was measured at 0.268". Calculate the *Corrosion Rate*.

- 10. In October 2011, a CML was measured at 0.435". In February 2019 the same CML was 0.384". Calculate the *Corrosion Rate*.
- 11. Calculate the controlling *Corrosion Rate* for the following CML.

t _{minimum}	Jan 2020	Jan 2015	Jan 2012	Jan 2010
0.510"	0.560"	0.565""	0.586"	0.600"

- 12. The controlling *corrosion rate* at a CML is 0.004 ipy. The *current thickness* is 0.332" and the *retirement thickness* is 0.268". Calculate the *Remaining Life* at this CML.
- 13. Calculate the *Remaining Life* for this CML.

t _{minimum}	Jun 2020	Jun 2015	Jun 2013	Jun 2003
0.228"	0.282"	0.308""	0.315"	0.320"

- 14. *API 510 students:* For a vessel, the controlling *Corrosion Rate* is 0.006 ipy and the *Remaining Corrosion Allowance* is 0.096". Determine the *Intervals* for the *Internal* and *External Inspections*.
- 15. *API 570 students:* For a *Class 2* pipe circuit, the controlling *Corrosion Rate* is 0.006 ipy and the *Remaining Corrosion Allowance* is 0.096". Determine the *Intervals* for the *Thickness Measurement* and *External Inspection*.
- 16. *API 653 students:* For a tank shell, the controlling *Corrosion Rate* is 0.006 ipy and the *Remaining Corrosion Allowance* is 0.096". Determine the *Intervals* for the *Shell Thickness Measurement* and the *External Inspection*.
- 17. *API 510 students:* The *Remaining Life* of a vessel is 3 years. Determine the *Intervals* for the *Internal* and *External Inspections*.

- 18. If there are multiple CMLs on an equipment item, which CML controls the *Remaining Life* calculation?
 - a. The CML with the highest short-term corrosion rate.
 - b. The CML with the highest long-term corrosion rate.
 - c. The CML with the overall highest corrosion rate.
 - d. The CML with the lowest remaining corrosion allowance.
 - e. The CML with the shortest remaining life.

Thickness Data

CML #	<i>t</i> minimum	Apr 2020	Aug 2018	May 2013	Jan 2005
1	0.380"	0.422"	0.428"	0.456"	0.480"
2	0.380"	0.433"	0.442"	0.466"	0.478"

- 19. *API 510 students:* Use the above thickness data for a vessel. Determine the *Interval* and *Next Inspection Date* for the *Internal* and *External Inspections*.
- 20. *API 570 students:* Use the above thickness data for a *Class 3* piping circuit. Determine the *Interval* and *Next Inspection Date* for the *Thickness Measurement* and *External Inspections*.
- 21. API 653 students: Use the above thickness data for a tank. Determine the Interval and Next Inspection Date for the Shell Thickness Measurement and External Inspections.

